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Abstract: AIDS has claimed the lives of 25 million people worldwide, an additional 40 million people are HIV-infected 
and new cases are being diagnosed every year. Despite the fact that HAART has moved AIDS from the category of termi-
nal diseases to that of treatable chronic illnesses, its long-term therapeutic success may be compromised by the develop-
ment of resistance to the currently used drugs. Despite the availability of RT, PR and fusion inhibitors, the development of 
further drugs such as inhibitors that target the third enzyme IN is essential for the clinical management of HIV-infected 
patients. The absence of cellular homolgues to IN and the unique nature of the reactions catalyzed by IN, make it an ideal 
target for drug design. Considerable progress towards designing HIV-1 IN inhibitors has been made over the last years 
and several lead compounds have been identified, synthesized and clinically studied. This review focuses on the existing 
knowledge of the biology of HIV-1 IN with emphasis on the mechanism of integration, structure and function and the 
technologies for measuring IN activity. This is followed by the current trends on designing HIV-1 IN inhibitors with the 
aid of molecular informatics and a review on the main classes of HIV-1 IN inhibitors reported this far with special empha-
sis on the clinical candidates. 
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INTRODUCTION 

 At the time AIDS was diagnosed, in the early 1980s, it 
claimed the lives of infected patients within two years. To 
date, AIDS has killed more than 20 million people world-
wide and an additional 40 million people are HIV-infected 
[92]. In 1983, the responsible virus, HIV, was identified and 
isolated from infected patients [103, 164, 204, 241] and this 
was followed by the development of an antibody test for the 
detection of this virus [238]. Shortly after, the first FDA ap-
proved drug for the treatment of HIV-1 became available to 
patients [86]. Initially, HIV patients were subjected to mono-
therapy with the RT inhibitors. However, due to the rapid 
emergence of drug resistant viruses this method soon proved 
inadequate. The addition of PR inhibitors in the mid 90s 
considerably enhanced viral suppression. Subsequent studies 
demonstrated the effectiveness of combining drugs from 
different classes and this combination therapy named, 
HAART significantly improved the quality of life and 
lifespan of HIV infected patients [202, 296]. Currently, there 
are 19 FDA approved drugs for the treatment of AIDS. 
Those belong to the class of nucleoside RT, non-nucleoside 
RT, PR and fusion inhibitors [60, 61, 201, 228]. The most 
successful treatment for the HIV virus includes a combina-
tion of three or more drugs from at least two different classes 
of inhibitors. Despite the fact that HAART has moved AIDS 
from the category of terminal diseases to that of treatable 
chronic illnesses, its long-term therapeutic success may be 
compromised by the persistence of viral reservoirs, the  
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development of resistance to the currently used drugs, pa-
tient adherence and toxicity. Therefore, the development of 
novel antivirals that target new modes of inhibition is of 
paramount importance and has been the focus of recent re-
search efforts. 

VIRAL RESERVOIRS 

 The initial optimism that the HIV virus will be fully 
eradicated in patients receiving HAART vanished after a 
study by Chun et al. [46] provided evidence for the persis-
tence of replication-competent virus in latently infected cells 
of patients receiving HAART. Incomplete inhibition of re-
verse transcription leads to the accumulation of either re-
verse transcribed viral cDNA or integrated provirus, which 
constitute the viral reservoirs. Cellular reservoirs have been 
identified in the well-studied CD4+T cells, and the less-
studied antigen-presenting cells such as macrophages and 
DCs. The longevity of the provirus depends on the activity 
of the cell that it resides in therefore, a provirus in quiescent 
cells can exist for a prolonged period in a latent state. Repli-
cation-competent virus was recovered from resting CD4+T 
cells of patients that were on successful HAART treatment 
for a period of time ranging from 10 days to 9 years [47, 49, 
99, 263, 304]. Initial studies indicated that viral reservoirs in 
latent cells are replication incompetent in the absence of an 
activating stimulus, while other studies demonstrated low 
levels of ongoing viral replication. As a result of the ongoing 
replication the longevity of the viral reservoir is prolonged 
by a continuous reinfection of the latent cells [244, 320]. 
Continual replenishment of the viral reservoirs in infected 
patients was demonstrated in a study by Chun et al. through 
the cross infection between latent and activated CD4+T cells 
[49]. 
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 HIV infected patients that discontinue the HAART 
treatment experience a sudden increase of their viral load, 
due to the persistence of viral reservoirs [48]. Adding an 
agent from a different class of drugs to which a patient has 
been exposed, may lead to a more successful therapy and 
may be necessary to completely eradicate the ongoing viral 
replication [156]. Therefore, other steps of the HIV life cycle 
have been considered as potential targets for HIV inhibition. 

LIFE CYCLE OF HIV 

 The structure of the HIV virus particle includes a viral 
capsid surrounded by the matrix and the virion envelope. 
The viral capsid contains the major capsid protein p24, the 
nucleocapsid protein p7/p9, the single stranded RNA ge-
nome and the enzymes RT, IN and PR. The matrix protein 
p17 is located underneath the virion envelope and surrounds 
the viral capsid. The viral envelope consists of a lipid bilayer 
membrane and an envelope precursor protein gp160. Cellular 
protease cleaves gp160 to the outer membrane protein gp120 
and the transmembrane protein gp41 both of which are con-
nected noncovalently. The viral proteins are encoded by dif-
ferent genes, proteins p17, p24 and p7/p9 are encoded by the 
gag gene and the enzymes RT, IN and PR by the pol gene. 
The function of RT is to transcribe the viral RNA into dou-
ble stranded DNA and its low fidelity rate in combination 
with the high turnover rate of virus production in vivo leads 
to the genetic diversity of the HIV virus. IN incorporates the 
viral DNA into the host chromosome and PR generates the 
individual viral proteins by proteolytic processing of their 
precursors. A series of accessory proteins are also part of the 
HIV virions [7, 110].  

 The initial step in the HIV infection is the attachment of 
the virus particle to a membrane receptor molecule of the 
human cell. This interaction occurs between the viral glyco-
protein gp120 and the CD4 receptor, a membrane glycopro-
tein of human T-lymphocytes. Binding of gp120 to CD4 
induces a conformational change in gp120 unravelling a 
binding site for chemokine coreceptors usually identified as 
CXCR4 and CCR5 [65, 69, 281]. Binding of the coreceptor 
induces a conformational change to the viral glycoprotein 
gp41. As a result the two membranes move towards each 
other and fusion takes place [154, 250, 305]. Upon entry into 
the cell cytoplasm the viral capsid is uncoated releasing the 
viral RNA and the viral enzymes RT, IN and PR. Reverse 
transcription converts the single-stranded viral RNA into the 
double stranded cDNA. Integration of the viral DNA to the 
host chromosome is catalyzed by IN within the context of a 
higher order PIC. Integration takes place within the nucleus 
leading to the provirus that upon triggering, is transcribed 
into RNA by host cell machinery and facilitated in part by 
the regulatory viral proteins Tat and Rev [10, 157, 186, 196]. 
Translation of the viral RNA occurs outside the cell’s nu-
cleus and produces a genomic full-length RNA and propep-
tides that are transformed into mature viral proteins by the 
action of PR [100, 143]. The viral proteins and RNA assem-
ble at the cell membrane and bud off to infect new cells. 

 Each step of the HIV life cycle can serve as a potential 
target for inhibition. RT and PR were the initial targets for 
inhibition and subsequently, viral entry and integration re-
ceived considerable interest from the scientific community 
[115, 225]. IN makes an attractive target for inhibition be-

cause it is essential for viral replication. Furthermore, no 
known human homologue of IN exists which makes possible 
the development of selective inhibitors with low toxicity. IN 
has been the subject of several recent reviews that mainly 
dealt with the identification of inhibitors [4, 135, 182, 240, 
302, 303]. This review focuses on the existing knowledge of 
the biology of HIV-1 IN with emphasis on the mechanism of 
integration, structure and function, and the technologies for 
measuring IN activity, followed by the current trends on de-
signing IN inhibitors with the aid of molecular informatics 
and a review on the main classes of HIV-1 IN inhibitors re-
ported this far with emphasis on compounds in clinical trials. 

THE MECHANISM OF DNA INTEGRATION 

 IN is a 32-KDa protein encoded by the 3’ end of the pol 
gene. It is first translated as a large component of polypro-
tein gag-pol from which it is released by the action of prote-
ase during maturation. IN catalyzes the insertion of viral 
DNA into the host genome. This process occurs at two dis-
tinct steps, 3’-processing and strand transfer [25, 76, 137, 
140, 261]. 

 Reverse transcription occurs in the cytoplasm and single 
stranded RNA is converted into the double stranded DNA 
that contains a conserved four nucleotide CAGT sequence at 
the viral ends. The viral DNA becomes part of a larger nu-
cleoprotein structure known as the PIC. IN within the con-
text of PIC recognizes the CAGT sequence at the viral DNA 
ends, forms a stable complex with the viral DNA and then 
catalyzes the cleavage of the conserved GT nucleotides from 
each 3’-end of the viral DNA, termed 3’-processing. This 
reaction occurs by the one-step hydrolysis of the phosphodi-
ester bond at the 3’-CA dinucleotide. Divalent metal ions 
and a nucleophile are necessary for this step to take place 
[260]. In vitro both Mg2+ and Mn2+ can perform this function 
while in vivo Mg2+ is believed to be the cation of choice [6, 
53, 233, 300]. The divalent cation activates water molecules 
that act as the necessary nucleophile even though small alco-
hols, certain aminoacids and the 3’-viral end can perform 
this function as well [35, 135, 293]. The activated OH group 
attacks the phosphodiester bond in the viral DNA at the con-
served adenosine and the result of this reaction is the forma-
tion of 3’-CA-OH ends and the terminal 5’-GT-3’ dinuce-
lotides. It has been proposed that the final stages of reverse 
transcription and the initial steps of integration occur simul-
taneously [81, 280, 308] and a specific interaction has been 
shown to occur between RT and IN [120, 319]. 

 Following 3’-processing, PIC is imported into the nu-
cleus of the cell where strand transfer takes place [22, 23]. 
During this step IN catalyzes the ligation of the viral 3’-OH 
ends into the host chromose. The newly formed 3’-OH 
groups act as the nucleophiles by attacking the phosphodi-
ester bonds of both strands of the target DNA at a distance of 
five base pairs on each strand [14]. Completion of the strand 
transfer step leads to a two base overhang from the 5’-end of 
viral DNA and a five-base single stranded gap. These gaps 
are likely repaired by the action of host cell DNA repair en-
zymes [2, 57, 310]. Studies have also implicated RT and IN 
in gap repair [15]. Both 3’-processing and strand transfer are 
one-step transesterification reactions that proceed through an 
SN2 mechanism [11]. A proposed transition state involves an 
arrangement with a trigonal bipyramid where the nucleophile 
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and leaving group occupy the apical position [107]. Both 
reactions are sequence specific and require the 5’-CAGT-3’ 
sequence at the end of each viral LTR. Substitution of any of 
these 4 dinucleotides has dramatic effects on the activity. 
Residues distal to the LTR end were also identified to be 
important for integration [84]. Preferential integration has 
been observed at sites of severe DNA distortion, indicating a 
need for a wide major groove or for distortion of the target 
DNA during the strand transfer step [242]. In addition, active 
genes and regional hotspots have been identified as favored 
integration sites [259]. Cellular cofactors, such as INI1, have 
been implicated in directing proviral DNA to favored inte-
gration sites [139]. 

 Whereas in vivo integration takes place within the PIC, in 
vitro purified IN and DNA are sufficient to catalyze both 3’-
processing and strand transfer however, only single LTR 
ends are integrated [284]. IN catalyzes another reaction in 
vitro that is the opposite of strand transfer, called disintegra-
tion. During this step a substrate that mimics the complex of 
the viral DNA linked to the target DNA is cleaved into its 
individual parts [44]. Another reaction catalyzed by retrovi-
ral INs, in vitro, is the non specific alcoholysis of nonviral 
DNA sequences [142]. 

HOST FACTORS OF INTEGRATION 

 Integration in the infected cell is a more complex process 
that requires the recruitment of the PIC [87]. PIC is com-
posed of the viral cDNA, viral and cellular proteins. The 
main viral proteins include the matrix protein p17, the capsid 
protein p24, the nucleocapsid protein p7/p9, the enzymes 
RT, IN and the accessory protein Vpr [23, 88, 121, 200]. IN, 
Vpr and the matrix protein p17 have been implicated in nu-
clear import and the nucleocapsid protein in enhancing cata-
lytic activity [102, 121, 132, 230]. The exact mechanism of 
integration has not been established so far [234] and studies 
support the idea that host factors are required to accomplish 
integration of the viral DNA into the human genome in vivo 
[148, 282, 287]. 

 BAF, a single polypeptide that consists of 89 aminoacids 
was first identified as a host factor of MoMLV [161] and 
later as part of the PIC complex of HIV [166]. BAF pre-
vented autointegration in the MoMLV virus and a similar 
role has been proposed for the HIV-1 virus. High-salt strip-
ping and functional reconstitution experiments revealed that 
low concentrations of BAF can restore the integration activ-
ity of salt-disrupted HIV-1 PICs [33]. BAF however, has not 
been validated as a host factor of IN in vivo. 

 HMG-I(Y) was identified in PICs isolated from HIV-1 
infected cells. In vitro depletion of HMG-I(Y) from PICs 
diminished activity that was restored upon back-imple-
menting the protein [90]. Mechanistic studies indicated that 
an interaction between HMG-I(Y) and cDNA promotes the 
formation of active IN-DNA complexes, presumably by 
bringing together DNA segments. This observation is cons-
istent with the fact that no direct interaction between HMG-
I(Y) and IN was detected [125, 165]. Recent studies argue 
that HMG-I(Y) has an important role during HIV transcrip-
tion [122]. 

 INI1, identified in a yeast two hybrid screen, is the first 
protein shown to directly interact with HIV-1 IN and stimu-

late its in vitro activity. INI1 is composed of 385 amino acids 
and consists of three highly conserved domains. These in-
clude two imperfect repeats, Rpt1 and Rpt2, a C-terminal 
domain and a homology region-3. INI1 interacts specifically 
with HIV-1 IN through the Rpt1 region but does not interact 
with the INs of other retroviruses. A fraction of the Rpt1 
region named S6, residues 183-294, inhibits HIV-1 particle 
production and replication through the direct interaction of 
S6 to HIV-1 IN within the gag-pol context [311]. On the 
contrary, S6 did not inhibit particle production of other ret-
roviruses which, indicates specific incorporation into HIV-1 
virions at an approximate ratio of 1 molecule of INI1 per 2 
molecules of IN [312]. The role of full-length INI1 in HIV-1 
replication is not yet clarified and the lack of strong experi-
mental evidence makes it difficult to assign a function for 
INI1 during HIV-1 replication in vivo [287]. 

 LEDGF/p75 is the most recently identified cellular part-
ner of HIV-1 IN. The protein contains 530 amino acids and 
consists of two domains, the N- and C-terminus. The N-
terminal domain contains a PWWP motif, residues 1-92, 
believed to mediate protein-protein interactions and a NLS 
domain, residues 148-156. The IBD was mapped to residues 
347-429 within the C-terminal domain [40]. The solution 
structure of IBD determined by NMR spectroscopy, is com-
posed of five -helices. Helices 1, 2 are connected to heli-
ces 4 and 5 through the shorter 3 helix and the IN bind-
ing residues are located in the hairpin loop regions of the 
IBD [42]. A crystal structure of the CCD of HIV-1 IN with 
LEDGF/p75 has been recently reported (Fig. 2). The CCD 
forms a dimer and two LEDGF/p75 molecules interact with 
the dimer interface [41]. In infected cells the simplest model 
proposes a complex that contains a pair of IN tetramers in 
association with two subunits of LEDGF/p75 [39]. Even 
though the CCD is the main domain of interaction with 
LEDGF/p75 experiments with IN deletion mutants demon-
strated that the NTD is also involved and enhances the activ-
ity of the interaction [177]. Functions attributed to 
LEDGF/p75 are to direct IN to the chromosomes of the host 
cell and thus, influence its nuclear retention [77, 170] and to 
determine the stability of IN in cells [169]. The in vivo role 
of LEDGF/p75 in viral replication was investigated by 
knockdown of LEDGF/p75 in cells leading to a reduction in 
HIV replication. Activity to nearly wild-type levels was re-
stored upon back-complementing the cells with the protein 
[290]. Furthermore, depletion of LEDGF/p75 resulted in a 
reduction of HIV integration in transcription units and in 
genes regulated by LEDGF/p75 and was favored in target 
DNA with higher GC content [50]. Thus, LEDGF/p75 di-
rects the location of HIV integration in cells. Overexpression 
of the C-terminal domain of LEDGF/p75, that contains the 
IBD, led to inhibition of HIV viral replication [249]. These 
results demonstrate that LEDGF/p75 interaction with IN can 
pose as a novel target for inhibition. 

 The human polycomb group EED protein is another host 
factor of both MA and HIV-1 IN and may have a functional 
role at the early steps of infection. EED contains two discreet 
binding domains located at its N-terminal domain that bind 
at the CTD of IN [295]. Another candidate co-factor, the 
yeast cellular protein HSP60 interacts with HIV-1 IN in vitro 
and stimulates processing and joining activities [232]. Re-
cently, an interaction between hRad 18, a component of the 
DNA postreplication/translation pathway and IN has been 
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demonstrated [208]. Viral IN bears an N-terminal pheny-
alanine that is conserved within the subtypes of HIV-1. N-
terminal phenylalanine is part of a degradation signal that is 
recognized by a system known as the N-end rule pathway. 
According to the nature of the N-terminal residue of a pro-
tein the N-end rule can define the in vivo half-life of the pro-
tein. Mutational studies of the N-terminal phenylalanine of 
HIV-1 IN identified IN as a short-lived protein and a sub-
strate of the N-end rule pathway [207]. It has been demon-
strated that hRad 18 protects the otherwise unstable HIV-1 
IN from fast degradation [208]. 

TECHNOLOGIES FOR MEASURING HIV INTE-

GRASE ACTIVITY 

 The identification of HIV-1 IN inhibitors has been ac-
complished by a variety of biochemical-based assays that 
either employ recombinant enzyme screens to target 3’-
processing, strand transfer and disintegration or measure 
activity within the context of the PIC [301-303]. The recom-
binant enzyme assays include purified IN expressed in E. 
coli, a synthetic DNA oligonucleotide that contains the ter-
minal sequences of viral DNA, target DNA and a divalent 
metal ion. Single LTR ends are integrated and the products 
are distinguished from the original oligonucleotide by their 
migration times [54]. The reaction of 3’-processing is meas-
ured by the removal of the two nucleotides from the viral 
DNA ends, and the strand transfer step is measured by the 
formation of longer DNA strands. The association of IN with 
DNA can be detected by FCS technology during which IN 
binds to fluorescently labeled oligonucleotides and the com-
plexes are detected during FCS measurements. Inhibition of 
the IN-DNA complex formation by G-quartets was effec-
tively measured using this technique [291]. A variation of 
this method allowed the kinetic analysis of the 3’-processing 
step and the evaluation of inhibitors [302]. Assays specific 
for the strand transfer step measure reactions subsequent to 
IN-oligonucleotide assembly, which are initiated by the addi-
tion of a target DNA. An assay specific for the strand trans-
fer activity designed by Hazuda et al. measures the integra-
tion of biotin labeled target DNA into model donor DNA 
immobilized on microtiter plates [116]. Alternative mi-
crotiter plate assays employ model DNA substrates that con-
tain biotin and digoxigenin in each strand in order to facili-
tate detection of the product. These microtiter plate assays 
have been employed for the in vitro high throughput screen-
ing of antiviral drugs [127, 134]. An alternate assay employs 
a crossbones substrate in which two viral DNA ends are 
joined to a target DNA at a distance of five base pairs. This 
substrate mimics the structure of the integration intermedi-
ate. The assay requires two half-crossbones to be brought 
together and measures the ability of IN to juxtapose two viral 
DNA ends [45]. Modified oligonucleotides that contain an 
abasic site were also employed as a probe to study DNA-IN 
interactions. These oligonucleotides are covalently joined 
with IN through the formation of a Schiff base between the 
aldehydic abasic site and an amino group from a lysine resi-
due in HIV-1 IN. The Schiff base is detected after reduction 
with sodium borohydride [192]. In a disintegration assay a 
Y-shaped oligonucleotide mimics the integration intermedi-
ate that is cleaved into two fragments of viral and target 
DNA by the action of IN [44, 212, 253]. This assay has been 
employed to identify an inhibitor that interacts with the cata-

lytic site at the CCD of IN. An assay for measuring the gap 
repair step in vivo has been developed and applied for the 
study of the reaction kinetics for MoMLV. This assay could 
prove important for the determination of the factors that me-
diate gap repair [253]. The recombinant IN assays are fast, 
easy to carry out, and at low cost. Nevertheless, on numerous 
occasions they identified false positives when the in vitro 
reaction was carried out in the presence of Mn2+, rather than 
Mg2+ [35]. 

 HIV-1 PICs are collected from infected cells and can 
catalyze the concerted integration of both LTR ends to the 
target DNA to give a product that resembles the in vivo 
gapped intermediate. PCR-based assays have been proposed 
to better represent in vivo integration than the recombinant 
IN-assays. In fact, small molecules identified as IN inhibitors 
with the recombinant IN assays, were inactive with the PIC-
based assays [89, 113]. These compounds did not interfere 
with 3’-processing or strand transfer but possibly with a step 
prior to integration, such as in vitro assembly. Nevertheless, 
the PIC-based assays were not as popular as the recombinant 
enzyme assays for the identification of IN inhibitors due to 
difficulties in using large amounts of infectious HIV. An 
improved PIC-based assay instead of live HIV uses HIV 
vectors to produce PICs able to carry out integration but not 
to spread infection. In this assay DNA is immobilized on a 
well-plate and the integrated PICs are analyzed by real-time 
fluorescence monitored PCR. This combination speeds up 
the procedure considerably, 96 assays in 6 hours. Using this 
assay a library of IN inhibitors was screened leading to the 
identification of a compound with activity against PICs 
[114]. An alternative PIC based assay employs PCR amplifi-
cation to directly detect integration events within 4-5 hours 
[18]. PIC-based assays can potentially identify new noninte-
grase-directed targets of inhibition such as the cellular and 
viral proteins that are part of the complex. 

 Real-time PCR assays measure the number of HIV DNA 
species during HIV replication. These include reverse tran-
scribed linear viral DNA, integrated DNA and unintegrated 
DNA circularized by recombination between DNA LTRs, 
known as LTR-circles. By changing the primer/probe set 
each of the DNA species can be quantified. The integrated 
DNA can be quantified with chromosomal Alu repeats [27]. 
Alu elements are repeatitive elements that occupy about 5% 
of the human genome and are randomly distributed every 
5000 base pairs [199]. Fractions of the integrated DNA close 
to an Alu-repeat are PCR amplified however, proviral DNA 
that does not integrate close to an Alu-repeat, is not ampli-
fied. Subsequent PCR assays overcame this sensitivity issue. 
A two-step PCR assay reported by Doherty et al. was 10-100 
times more sensitive than the original Alu-PCR [224]. In the 
first non-kinetic preamplification step the primers used bind 
to genomic Alu-repeats and HIV-1 gag sequences. Preampli-
fication is followed by real-time PCR that quantifies the 
HIV-1 LTR sequences. An alternative linker-primer PCR 
assay was developed to detect integrated HIV DNA species 
and takes advantage of the frequently occurring NlaIII rec-
ognition sites (4 bp CATG sequence) near the integrated 
provirus. Following NlaIII digestion, linkers are ligated to 
the generated DNA termini and serve as templates for prim-
ing in a subsequent PCR step. This assay was employed in 
the study of the kinetics of viral DNA accumulation post 
infection [288]. The Alu-PCR assays were used to authenti-
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cate IN inhibitors that were previously identified in cell-free 
assays [236, 289]. 

 The chimeric virus technology is another technique for 
the identification of the target of a particular drug [96]. It 
employs the recombination of IN drug resistant strains into a 
proviral HIV-1 clone for which the corresponding IN gene 
has been deleted. Recombination leads to chimeric viruses 
that have developed resistance. If, in the presence of an IN 
inhibitor, the recombined strains display the same loss in 
sensitivity to the original mutant IN strains, it would confirm 
that the IN mutations are responsible for the resistance phe-
notype [97, 98]. 

STRUCTURE AND FUNCTION OF HIV INTEGRASE 

 HIV-1 IN consists of three structurally distinct domains, 
the NTD, residues 1 to 49, the CCD, residues 50 to 212 and 
the CTD, residues 213-288 [55, 239]. To date, the insolubil-
ity of HIV-1 IN has been the main barrier in obtaining a 
crystal structure of the full-length IN. However, the discov-
ery of a single mutant, through site-directed mutagenesis, 
within the CCD of IN dramatically increased its solubility 
while retaining catalytic activity [129]. The substitution of 
lysine 185 for phenylalanine enabled IN50-212 to be crystal-
lized and its structure to be solved for the first time by Dyda 
et al. [71]. Since then other crystal structures of the isolated 
CCD and in complex with either the CTD or the NTD have 
been resolved. The structure and function of HIV-1 IN has 
been the subject of a recent review by Chiu et al. [43]. 

 The structure of the NTD of both HIV-1 and HIV-2 IN 
was elucidated by NMR spectroscopy [28, 29, 74]. The NTD 
of HIV-1 IN exists as a dimer in two interconverting forms 
and has a monomer fold of helix-turn-helix. This motif is 
similar to that of a number of helical DNA binding proteins 
even though no significant sequence similarities exist. The 
dimer interface is of hydrophobic nature. Each monomer is 
composed of four helices. The lower region of each mono-
mer is stabilized by a hydrophobic core and the upper region 
by the coordination of Zn2+ to H12, H16, C40 and C43. The 
HHCC motif resembles a zinc motif usually found in DNA 
binding proteins and is phylogenetically conserved in all 
retroviral INs [136, 145]. The Zn2+ atom is tetrahedrally co-
ordinated in both forms at a stoichiometric ratio of one Zn2+ 
per IN monomer. The position of Zn2+ as well as Cys40 and 
Cys43 is identical in both forms while the relative positions 
of His12 and 16 are reversed [28]. In the absence of Zn2+, the 
NTD is disordered and upon Zn2+ addition it adopts a highly-
ordered -helical secondary structure. 

 Point mutations of His or Cys residues abolish the zinc 
binding ability of IN and affect the 3’-processing and strand 
transfer activity but do not impair disintegration activity 
[24]. These results confirm that the active site is not located 
in the NTD and that this domain is not the single DNA bind-
ing domain in the protein [78, 124, 159, 285, 292]. Further 
chimeric experiments with HIV-1 IN and visna virus IN in-
dicated that the NTD does not contribute to viral DNA speci-
ficity, either [141]. However, the NTD is proposed to inter-
act with DNA in the context of the whole protein [78, 124, 
159, 285]. Recent studies have suggested that Zn2+ promotes 
multimerization of the full-length IN by stabilizing protein-
protein interactions and enhances in vitro 3’-processing and 
strand transfer activity [163, 318]. These activities are metal 

dependent and are more pronounced in the presence of Mg2+ 
rather than Mn2+ [162]. Therefore, it is widely accepted that 
the zinc-binding motif interacts with the core domain by 
forming a multimeric structure essential for 3’-processing 
and strand transfer activity. An interaction between the NTD 
and the two cellular transcription factors INI1 [311] and 
LEDGF/p75 [287] has also been identified. 

 The structure of the CCD domain of IN, first resolved by 
Dyda et al. was enabled after the substitution of lysine 185 
for phenylalanine [71]. However, it was later found that the 
F185K mutation disrupted virion assembly in vivo and there-
fore some of the later crystal structures beared the F185H 
mutation that retained full activity of IN and did not disrupt 
virion assembly [43, 130]. The CCD contains the acidic resi-
dues D64, D116 and E152 that form the active site and are 
conserved among INs. In the structure reported by Dyda et 
al. [71] the geometry of the active site of IN was compro-
mised by the use of cacodylic acid as means of crystalliza-
tion. Furthermore, the catalytic residue E152 was located in 
a region of disordered residues and was thus, not observed. 
A subsequent structure by Bujacz et al. [21] assigned that 
disordered region to a long loop with an extended conforma-
tion and identified the location of residue E152. The side 
chain of E152 however, was pointing away from residues 
D64 and D116, a situation unlikely to correspond to the ac-
tive enzyme. It was later revealed that the cacodylate caused 
a change in the geometry of the active site through the cova-
lent modification of the cysteine residues C65 and C130. 
This modification led to the formation of an intramolecular 
hydrogen bond between the catalytic residue D64 and the 
amino group of the catalytic residue D116 [108]. In two ca-
codylate-free crystal structures of the catalytic core domain 
the carboxylate groups of D64 and D116 are found in a suit-
able orientation to accommodate a metal ion by participating 
in intramolecular hydrogen bonding with amide residues 
from the protein and intermolecular hydrogen bonds with 
water molecules. The other catalytic residue E152 does not 
participate in any interactions [108]. Crystal structures of the 
CCD complexed with Mg2+ display a very similar active site 
with the Mg2+-free structures, which indicates that no con-
formational change occurs upon metal binding [108, 178]. In 
the Mg2+-complexed structure one Mg2+ ion interacts with 
the carboxylate groups of D64 and D116 and with either two 
or four water molecules. These water molecules form further 
hydrogen bonds with the protein. The third catalytic residue 
E152 does not participate in metal binding. Overall the re-
ported crystal structures of the CCD display a similar topol-
ogy (Fig. 1). In all structures CCD forms a dimer and each 
monomer is characterized by a five-stranded -sheet flanked 
with six -helices. The dimer interface is held by hydropho-
bic interactions with residues from helices 1 and 5 and 
covers an area of about 1400 Å2 per monomer. The area ini-
tially thought of as a disordered loop comprised of residues 
188-193, in better defined structures forms a short two-
stranded antiparallel -sheet, 6 and 7. The loop comprised 
of residues 140-150 adopts a flexible conformation that is 
likely to become ordered in the presence of the DNA sub-
strate. In the better resolved crystal structures, residue E152 
is part of helix 4 and its side chain is facing towards cata-
lytic residues D64 and D116 [21, 108, 178]. The DDE resi-
dues form a shallow cavity on the surface of the protein. 
Lately, Goldgur et al. [109] reported the first crystal struc-
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ture of the CCD of HIV-1 IN complexed with an inhibitor, 
5CITEP. The inhibitor is located between active site residues 
D64, D116 and E152 and forms a hydrogen bond with E152. 
Residues D64 and D116 interact with the undisplaced Mg2+ 
ion. The most recent crystal structure of the CCD of IN is in 
complex with the host factor LEDGF/p75. The complex has 
a pseudo two-fold symmetry and consists of a dimer of the 
catalytic core domain of IN complexed to two molecules of 
LEDGF/p75 (Fig. 2). A phosphate ion is observed within the 
two active sites of the catalytic core domain of IN that was 
suggested to correspond to the coordination site of a DNA 
backbone phosphate. Mutations of IN that resulted in failure 

to bind LEDGF/p75, pinpointed the interaction site to the 
connector linking helices 4 and 5 [41]. 

 The overall topology and geometry of the active site of 
this domain bears similarities to other retroviral and retro-
transposon INs [20, 37, 178, 307], and to the broader family 
of polynucleotidyl transferases that include the Mu transpo-
sase, RNase H and RuvC. These enzymes contain three or 
four carboxylate amino acids as the catalytic residues. At 
least two of the carboxylates are located in identical posi-
tions in the secondary structure and in the tertiary structure 
all carboxylates adopt a similar configuration [105, 247]. A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A. Schematic diagram of HIV-1 IN, spanning residues 1 to 288. The independently folding domains are shown in color: Red NTD 
(corresponds to residues 1 to 49), Blue CCD (residues 50 to 211), Green CTD (residues 212 to 288). Conserved DDE catalytic residues 
(D64, D116, E152) are highlighted in yellow [55,239]. B. Crystal of CCD dimer (pdb 1BIZ). View of the same structure rotated vertically 
90° [108]. C. Co-crystal of CCD and NTD (pdb 1K6Y). View of the same structure rotated vertically 90°. Structure forms two nearly identi-
cal dimers with pseudo-C2 symmetry [299]. D. Co-crystal of the CCD and CTD (pdb 1EX4). View of the same structure rotated vertically 
90°. CCD forms a dimer within the co-crystal and CTD is monomeric [36]. 
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common catalytic mechanism has been proposed that in-
volves the use of two metal ions in activating hydroxyl 
groups as nucleophiles, despite the fact that only one metal 
ion has been observed in the crystal structures of HIV-1 IN 
[275, 306]. Based on the mechanism of DNA polymerase I 
the location of the two Mg2+ ions in HIV-1 IN has been pos-
tulated. The first known location is between D64 and D116 
and the second presumed location is between D116 and 
E152 [35, 276, 306]. The isolated CCD can perform the dis-
integration reaction while all three domains are necessary for 
the catalysis of 3’-processing and strand transfer [26, 79, 
294]. In the context of full-length IN, the CCD has been as-
signed a direct role in carrying out the 3’-processing and 
strand transfer reactions, in recognizing the conserved 
CA/TG base pairs near the viral DNA end and in recognizing 
target DNA [80, 105, 106, 152, 262]. Mutations of the con-
served residues D116N, E152Q abolishes detectable activity 
in all three processes while the mutations D64E and D64N 
retain barely detectable strand transfer and disintegration 
activity [78, 151] Mutational studies on other residues within 
the CCD identified K159 as an important residue for the rec-
ognition of the conserved CA dinucleotide of viral DNA 
[131] and excluded other residues initially thought to be im-
portant for activity [82]. The flexibility of the active site loop 
that consists of residues 141-148 is important for integration. 
When residues G140 and G149 that act as conformational 
hinges for the loop are replaced with alanines the flexibility 
of the loop is diminished. These mutants loose catalytic ac-
tivity but retain DNA binding affinity. Based on this obser-
vation the loop is proposed to have a role in a reaction step 
after the DNA binding step [111]. The importance of the 

flexible loop 140-149 was also corroborated by molecular 
dynamics studies [63]. 

 The CTD consists of residues 212-288 and is the least 
conserved domain among INs. The structure of the fragment 
220-270 of the CTD has been elucidated by NMR spectros-
copy. It forms a dimer in solution and the two monomers are 
arranged in an antiparallel position. Each monomer consists 
of a five-stranded antiparallel -strand and a three-residue 
helix. The dimer interface is mainly hydrophobic in nature 
and is formed by parts of the 2, 3 and 4-sheets. The over-
all topology resembles an SH3 domain which is most com-
monly found in proteins that are involved in signal transduc-
tion [3, 73, 171]. 

 The CTD is proposed to be involved in the multimeriza-
tion of IN [130], in binding DNA nonspecifically and is re-
quired for 3’-processing and strand transfer activity [3, 80, 
173, 294]. Mutational analysis identified residues in the CTD 
critical for oligomerization and DNA binding [174]. Viral 
DNA specificity was mapped to both the CTD and CCD and 
CTD-DNA interactions were identified just inside the CAGT 
base pairs of the viral DNA. A similar function for site-
specific DNA binding is exhibited by transposases [141, 
262]. Earlier studies attributed the interactions of the target 
DNA to the CTD however, the present studies indicate that 
all three domains interact with the target DNA [35, 55, 84, 
123]. Furthermore, experiments showed that CTD is in-
volved in interactions with HIV-1 RT [120, 319]. 

 By introducing five point mutations a crystal structure of 
the CCD complexed with the CTD was obtained (Fig. 1). 
The CCD within the complex forms the same dimeric struc-
ture as the one observed for the isolated CCD. On the con-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic diagram of full-length host factor LEDGF/p75, residues 1 to 530. The independently folding domains are shown in color: 
Grey NTD (corresponds to residues 1 to 325), contains a PWWP motif (residues 1 to 91) and a NLS domain (residues 148-156), Pink CTD 
(residues 325 to 530), contains the IBD domain (purple, residues 347-429) [40]. Co-crystal of IBD of LEDGF/p75 and CCD of HIV-1 IN50-

212 (pdb 2B4J). CCD forms a dimer and two LEDGF/p75 molecules interact with the dimer interface. LEDGF/p75 residues I365, D366, F406 
(red) and HIV-1 CCD 4/5 connector residues 168-171 (brown) involved in the interaction are highlighted. An expanded region of the inter-
action area is depicted [41]. 
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trary, the isolated CTD forms a dimer in solution but is 
monomeric when connected to the CCD. Both C-terminus 
are 55 Å apart, adopt a Y-shape conformation and have a 90° 
shift between them. The connection point with the CCD, 
helix 6, is believed to be flexible, thus giving the CTD a 
dynamic character able to adopt various orientations with 
respect to the CCD. A positively charged region extending 
from the catalytic site to the outside face of IN52-288 could 
serve as a platform for DNA binding. In that sense docking 
experiments placed an 18 bp viral DNA within that region 
[35, 36]. Shortly after, the crystal structure of the CCD com-
plexed with the NTD for an HIV-1 IN triple mutant was elu-
cidated (Fig. 1). The structure of IN1-212 forms two nearly 
identical dimers that share a pseudo-C2 symmetry. The CCD 
within the complex has a similar structure as the isolated 
domain. On the contrary, the interactions of the dimer inter-
face of the NTD within the complex differ from the ones 
observed in the solution structure of the isolated domain. The 
dimer interface of NTD within the complex is dominated by 
interactions between the 1 and 3 helices and cover a 
smaller area compared to the interface of the solution struc-
ture of NTD that is dominated by interactions of the a1 helix. 
The NTD is connected to the CCD through the disordered 
region comprising residues 47-55. The interface between the 
NTD and CCD is mainly hydrophilic and occurs between 
residues from the NTD of one dimer with residues from the 
CCD of the other dimer. Each dimer contains a phosphate 
ion at identical positions with respect to the active site DDE 
residues. Based on the crystal structures of IN1-212 and IN52-

288 a model for the structure of full-length IN is proposed in 
which the NTD is placed within the CTD [43, 299]. The full-
length IN model was used to perform docking studies with 
viral DNA. DNA-IN contacts were observed between the 
CCD and NTD of one monomer and the CTD of another 
monomer and the conserved CA dinucleotide was placed 
close to the catalytic DDE residue [62]. 

 The active form of IN is believed to be a multimer 
though the degree of active multimer, has not been deter-
mined [101, 124, 137, 300]. The evidence for an active mul-
timer is derived from domain deletion studies demonstrating 
that isolated domains of HIV-1 IN do not possess activity. In 
contrast, independent domains of IN can complement each 
other and restore IN activity [75, 283, 286]. The trans inter-
actions between the NTD and the CCD of HIV-1 IN mutant 

proteins indicated that an intact NTD and CCD must be part 
of different monomers within the multimer. On the other 
hand, the CTD could function in both cis and trans interac-
tions with the CCD [79]. Based on gel filtration experiments 
full-length IN exists in a dimer-tetramer equilibrium in solu-
tion. The isolated CCD and CTD and the two domain CCD-
NTD complex exist as a dimer. On the other hand, the two 
domain CCD-CTD complex exists in a dimer-tetramer equi-
librium. These results point to the CCD and CTD as the nec-
essary domains for multimerization [130]. Nevertheless, Zn2+ 
was found to promote multimerization indicating that the 
NTD as well is important for protein-protein interactions 
[163, 318]. Experimental data point towards a tetramer as the 
minimal active form of IN [185]. Cross-linked tetramers 
could catalyze full-site integration in vitro while dimers 
could integrate just one viral LTR end to the target DNA 
[93]. In detailed IN-DNA models DNA cross-links occurred 
in trans to the active site [104, 124]. A reconstructed 
tetramer of HIV-1 IN was consistent with the cross-linking 
experiments and confirmed the observation that the F185K 
mutation disrupts complex formation in vivo by preventing 
the tetramerization of IN [237]. 

COMPUTER-AIDED DRUG DESIGN FOR HIV-1 IN-

TEGRASE INHIBITORS 

 The field of HIV-1 IN inhibitor discovery has attracted 
substantial interest from the molecular informatics commu-
nity and various computer-aided drug design [138, 227] ap-
plications have been described in the literature including 
efforts to elaborate the structure of the binding site of the 
protein, to describe pharmacophores complementing the ac-
tive site and to discover novel lead molecules. Results of 
these studies have been well reviewed by Chen et al. [35] 
and Makhija et al. [182]. Computer-aided drug design meth-
ods fall in two broad categories based on the molecular in-
formation used. The first category relies on the availability 
of known inhibitors that form the starting point for investiga-
tion for chemical features responsible for the observed bio-
logical behavior. Pharmacophore definition and search, 
QSAR studies, and analog-driven de novo design, also 
known as inverse QSAR, are the main representative meth-
ods of this type. The second category of methods requires 
detailed target information such as that produced by NMR or 
X-Ray crystallography. Methods of this category include 

 

 

 

 

 

 

 

 

 

Fig. (3). Sample analog-based pharmacophores. A. Pharmacophore proposed by Nicklaus et al. [221] defined on the superposition of low 
energy conformers of two known inhibitors. The black circle represents a steric exclusion sphere. B. Pharmacophore proposed by Dayam et 

al. [59] defined from four known IN inibitors from the DKA family. All distances are in angstroms, numbers in parentheses represent the 
value range. 

Not For Distribution



HIV-1 Integrase: From Biology to Chemotherapeutics Current HIV Research, 2007, Vol. 5, No. 4    373 

virtual screening via docking and scoring, de novo design 
and receptor-based pharmacophore definition and search. 

Analog-Based Methods 

 These methods focus on information provided by a set of 
compounds known to bind strongly to the desired pharma-
ceutical target [176] or by structurally similar compounds 
that fail to show activity in order to refine the set of signifi-
cant chemical features and improve the quality of the model 
[209]. This specific arrangement of molecular features essen-
tial for biological activity is known as the pharmacophore 
[189]. Once discovered, the pharmacophore is used for 
screening databases for compounds matching it. Virtual hits 
are then submitted to further analysis and eventually biologi-
cal testing. In a series of publications Neamati et al. defined 
several ligand-based 3D pharmacophores and paved the way 
for subsequent research in this field. Nicklaus et al. [221] 
used CAPE, one of the first reported HIV-1 IN inhibitors, to 
derive a 3D pharmacophore that was refined using a second 
inhibitor. The pharmacophore consisted of three hydrogen-
bond acceptors and a steric exclusion sphere (Fig. 3) [221]. 
A pharmacophore search of the public NCI 3D database re-
sulted in 267 virtual hits. A subset of 60 compounds was 
selected based on availability, estimated solubility and lead 
optimization potential and screened for HIV IN activity. The 
identified inhibitors exhibited anti-IN activity in the micro-
molar range. Neamati et al. [212] followed a similar process 
to develop a four-point pharmacophore from reported HIV-1 
IN inhibitors of two chemical families, the chicoric-acids 
and the dicaffeoylquinic acids. The pharmacophore search 
identified 179 compounds of which 39 compounds were 
screened in vitro. Results showed that over 50% of the com-
pounds exhibited IN activity. In the last paper of the series, 
Neamati et al. [211] used seventeen lichen acids to construct 
two three-point pharmacophores. A virtual screening process 
was applied and several structurally unrelated IN inhibitors 
were discovered confirming the usefulness of the approach. 
More recently, Mustata et al. [210] reported the development 
of a strand-transfer specific pharmacophore by using a train-
ing set of 26 diverse IN inhibitors covering a wide strand 
transfer process activity range. A pharmacophore hypothesis 
consisting of two hydrogen bond acceptors, one hydrogen 
bond donor and one hydrophobic group was defined and 
validated on a set of 14 different IN inhibitors. Model pre-
dictions were in agreement with the biological data but no 
testing was reported against negative data. Both Barreca et 
al. [8] and Dayam et al. [59] defined a 3D pharmacophore 
model based on the class of DKA compounds. The pharma-
cophore developed by Barreca consisted of four points, two 
hydrogen bond acceptors, one hydrogen bond donor and one 
hydrophobic/aromatic point and was based on the crystallo-
graphic structure of the 5CITEP and the proposed mecha-
nism of action for DKA analogs [112]. A second inhibitor 
was used to set the range of possible distances between the 
various pairs of pharmacophore points. The pharmacophore 
developed by Dayam consisted of four points, two hydrogen-
bond donors, one hydrogen-bond acceptor and a hydropho-
bic region and was based on four representative compounds 
from the DKA class (Fig. 3). Pharmamacophore searching 
and further selection taking into account drug likeness led to 
compounds with HIV-1 IN inhibitory activity. 

 SAR studies offer a correlation between the exhibited 
biological properties of a molecule and its structure [227, 
248]. QSAR techniques attempt to generate computational 
models that identify structural and physicochemical features 
of molecules contributing to a certain biological outcome. 
Once constructed successfully, QSAR models are used to 
predict the biological property of new, unknown molecules 
and in certain cases assist in the understanding of the mecha-
nism of action of protein-ligand complexes. In one of the 
earliest QSAR method applications on HIV IN inhibitors 
Raghavan et al. [243] processed a dataset of flavone analogs 
with inhibitory activity against IN. A 3D QSAR technique, 
CoMFA, was employed that derives a QSAR model by align-
ing 3D conformations of molecules, sampling the steric and 
electrostatic fields surrounding them and correlating the dif-
ferences in these fields to biological activity. The QSAR 
model confirmed the importance of electrostatic and steric 
fields, with electrostatic fields playing a dominant role (79%) 
in determining the activity of these molecules [182] and high-
lighted regions possibly important for IN inhibition. A 
CoMFA-like approach was used by Costi et al. [52] to de-
velop a model capable to explain activity measured and help 
in the design of new active compounds. Another 3D QSAR 
method, CoMSIA, uses a probe atom and a grid to compute 
similarity values between the probe and a set of pre-aligned 
molecules at regularly spaced grid points. Similarity calcula-
tions are based on the differences of atomic physicochemical 
properties e.g. steric, donor/acceptor, etc. This method was 
applied by Makhija and Kulkarni [179, 180] to a diverse set of 
known inhibitors from 5 different classes. The resulting mod-
els showed considerable predictive ability for both 3’-
processing and strand transfer. Comparative predictive ability 
was obtained for the same set of compounds using an alterna-
tive technique, EVA [179]. Kuo et al. [153] used both CoM-
SIA and CoMFA as part of a study to optimize a series of 
lead compounds. The results combined with docking were 
used for guiding the rational design of 12 new inhibitors that 
had in vitro activity. More recently, Urra et al. [255] used a 
genetic algorithm method to iteratively generate and opti-
mize linear regression models on a diverse set of 172 IN in-
hibitors. The compounds were represented using a set of 
GETAWAY descriptors. In comparative tests the authors 
found that their descriptors of choice produced a model ex-
plaining 72.5% of the activity and compared favorably with 
other descriptors commonly used for QSAR. 

 Do novo design generates ligands from scratch based on 
information about the receptor site or known ligands. There 
are two main varieties of de novo design methods, receptor-
based de novo design where detailed information is required 
about the receptor structure and analog-based, or inverse 
QSAR, where the process requires only a set of known in-
hibitors preferably spanning a wide range of activity [19, 
258]. Makhija et al. [181], following up on their previous 
work on HIV IN pharmacophore models describe a de novo 
experiment using the LeapFrog tool. The starting point of the 
design experiment was the CoMFA pharmacophore model 
described previously [180]. This model was used to define a 
pseudo-receptor model consisting of a hypothetical IN cav-
ity. A computational process was employed to generate a set 
of virtual compounds predicted to bind to the hypothetical 
cavity better than the used reference structures. The most 
promising virtual compounds were selected for synthesis and 
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biological testing. The results led to structurally diverse 
compounds with moderate activity that upon further optimi-
zation could potentially lead to a new class of IN inhibitors. 
Barreca et al. [9] used a dataset of 33 DKA and DKA-
derivative molecules spanning a wide range of activity to 
generate a QSAR model. The model was used to design new 
DKAs that proved to be potent IN-inhibitors of the strand 
transfer process and confirmed the utility of the 3D QSAR 
model in designing and predicting new compounds. 

Target-Based Methods 

 Target-based methods depend on the availability of the 
detailed 3D structure of the pharmaceutical target [35]. 
Given the detailed target structure and information about the 
binding specifics of known inhibitors to an active site com-
putational approaches can be employed to place virtual 
molecules in the active site, docking, or to construct mole-
cules to match the cavity of the active site, de novo design. 
Despite the lack of a 3D structure for full-length IN, several 
target-based methods have appeared in the literature making 
use of the defined 3D structure of the CCD of HIV-1 IN 
[109], and of similar proteins [34], and the results of molecu-
lar dynamics experiments on the HIV IN [30, 66, 257]. 
Docking, describes a process by which a ligand and a protein 
target, fit together in three-dimensional space [150]. The in-
puts to the docking problem are the 3D protein structure of the 
target and a ligand-molecule believed to bind on the target 
protein surface. The output is the 3D structure of the corre-
sponding protein-ligand complex. Scoring functions aim to 
calculate accurately the binding energy of the protein-ligand 
complex [12]. A typical docking/scoring virtual screening 
experiment takes advantage of the knowledge about the recep-
tor site to model it and then performs docking of molecules 
from a database in a systematic manner. A number of confor-
mations are usually sampled for each molecule [150] and a 
score for every possible docking attempt is kept [273]. The 
results are presented in a virtual hit list. 

 In a study by Chen et al. [34] a docking virtual screening 
experiment was used to find novel HIV IN inhibitors. The 
experiment used the Y3 known inhibitor binding site of the 
ASV IN from a crystal structure of the complex and a puta-
tive Y3 binding site of the HIV IN hypothesized based on 
the similarity of the two IN proteins. The compounds in the 
public NCI 3D database were docked on the Y3 binding site 
of the ASV IN yielding 3100 hit compounds. A more rigor-
ous scoring approach was used to rescreen the hits against 
the Y3 binding site of the ASV IN and the putative Y3 bind-
ing site of the HIV IN. A subset of 22 virtual hits was heuris-
tically selected and submitted to in vitro testing where nearly 
64% proved to have IN inhibitory activity. Virtual screening 
using AutoDock [205] was employed by Schames et al. 
[257] to dock 5CITEP to the various conformations of HIV-
1 IN. Analysis of the predicted ligand-protein complexes 
indicated a previously uncharacterized trench next to the 
active site. Further docking studies of novel ligands with the 
potential to bind to both regions showed greater selectivity 
towards the newly characterized trench [257]. 

 Several applications on receptor-based do novo design 
for HIV-1 IN inhibitors have been reported in the literature. 
Nikitin et al. [222] used a virtual combinatorial chemistry 
space containing 1013 compounds and a hybrid algorithm 

combining combinatorial library design and receptor-based 
evaluation. The virtual chemistry space is available to a pro-
prietary de novo drug design program that exploits features 
of a given target protein and a scaffold to construct virtual 
compounds in a combinatorial fashion and score them 
against the target protein. The above algorithm was used to 
generate inhibitors of the HIV IN. The scaffold supplied to 
the program was a fragment found in known -diketone in-
hibitors of the HIV IN. The application of the program gen-
erated 800 ligand candidates, out of which 22 were selected 
for synthesis and testing. Twenty compounds were success-
fully synthesized and screened resulting in several hits in the 
low micromolar range. Jaganatharaja and Gowthaman [128] 
employed a hybrid de novo design application based on a 
receptor-based pharmacophore model and the known Y3 
ASV-IN inhibitor to identify cavities on the protein likely to 
represent binding sites. Y3 was used to identify key interac-
tion sites and develop a receptor-based static pharmacophore 
hypothesis that was used to generate 3000 molecules through 
structural manipulation of the seed structure, Y3. A physico-
chemical filter was applied to select 500 drug-like com-
pounds that were subjected to rigorous docking. The result-
ing compounds shared consistent binding characteristics in-
dicating the potential presence of a common binding mecha-
nism. In 2000, Carlson et al. [30] reported the first receptor-
based pharmacophore model for HIV-1 IN. Their method 
was designed to accommodate the incomplete crystal struc-
ture of the target protein and take into account the flexibility 
of the active site through the development of a “dynamic” 
pharmacophore. The starting point of the method was a col-
lection of protein conformations from a molecular dynamics 
simulation of the HIV IN [168]. For the development of the 
pharmacophore hundreds of probe molecules were placed in 
the catalytic site and simultaneously minimized while the 
protein was held fixed. This enabled the detection of con-
served binding regions for the probe molecules containing 
functional groups that complement the active protein site. 
The pharmacophore model, consisting of the conserved re-
gions, was made up of 9 sites: three excluded volumes to 
avoid steric clashes and six hydrogen-bond donor sites. 
Validation tests on 59 known IN inhibitors indicated that it is 
very specific for highly active compounds but much less so 
for moderately active ones. In vitro results on a subset of 39 
compounds confirmed the relevance of the model and identi-
fied 11 new inhibitor compounds. In a similar study, Deng et 
al. developed a dynamic receptor-based pharmacophore 
model representing the complementary features of the active 
site region of HIV IN [66]. Validation tests on a set of 128 
known inhibitors showed that over 72% of the active inhibi-
tors fit the model. A subsequent pharmacophore search on a 
database of commercially available compounds produced 
several structurally novel IN inhibitors [66]. A following 
study, extended the dynamic pharmacophore model of IN by 
considering more key residues in the active site including the 
cation Mg2+ [67]. The model was used to select twenty-two 
structurally novel compounds for in vitro testing which led 
to several hits. 

HIV-1 INTEGRASE INHIBITORS 

 IN has been a difficult target for structure-based drug 
design mainly due to the shallow substrate binding site, the 
lack of a crystal structure for the full-length protein and the 
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lack of a lead compound. Despite these issues, a consider-
able number of compounds have been reported to inhibit IN 
in the last 10 years, and this has been the subject of recent 
reviews [4, 135, 158, 182, 196, 240, 302, 303]. Strategies 
towards designing HIV-1 IN inhibitors involved random 
testing of compounds that exhibited inhibitory activity with 
related proteins [56, 94], high-throughput screening [83, 
117] and computer-aided drug design [35, 182]. 

 In order to validate a compound as the cellular target of 
HIV-1 IN, certain criteria must be met: i) inhibition must 
occur within the period of reverse transcription and matura-
tion, that occurs 4-16 hours after infection ii) accumulation 
of LTR circles, and diminished integration in infected cells 
treated with the inhibitor iii) accumulation of IN mutations 
in drug resistant strains and iv) inability of the compound to 
inhibit IN that bears the previously identified mutations 
[240]. Among the IN inhibitors studied so far, DKAs and 
their analogs are currently the only compounds that meet all 
four criteria and recently two analogues of the family, GS-
9137 and MK-0518, have advanced in clinical trials [158]. 
Additional promising inhibitors in preclinical development 
are the pyrano-dipyrimidines [231] and styrylquinolines (Ta-
ble 1) [197]. In this section we summarize the main classes 
of IN inhibitors reported in literature and emphasize the most 
promising compounds as leads for the development of anti-
IN drugs. 

DNA Binders 

 DNA intercalators and DNA groove binders were among 
the first inhibitors identified. The ends of the HIV-1 LTR 
contain a highly conserved region rich in AT-sequences. 
This region has been the target of inhibition of compounds 
such as polyamides and lexitropsins that specifically interact 
with AT residues [216]. However, the main limitation of 
these compounds is the difficulty in obtaining selective LTR 
binders. As a result most of these compounds exhibit high 
toxicity due to their activity on the host genome. Several 
studies with DNA binders suggested that IN inhibition does 
not necessarily correlate with DNA binding [32, 94]. 

Nucleotides 

 Modified mono- and di-nucleotides, designed to be resis-
tant to exonucleases, exhibited inhibitory activity against IN 
at micromolar concentrations [193, 278, 279]. Longer oli-
gonucleotides have also been investigated. G-quartets are 
oligonucleotides composed of deoxyguanosine and 
thymidine able to inhibit HIV-1 replication in culture assay 
systems. These oligonucleotides can fold upon themselves 
forming a stable structure of two stacked guanosine tetrads. 
Both the number of the quartets and the aminoacid sequence 
of the loops are important for maximum antiviral activity 
[191, 245]. Initial studies on the prototypical G-quartet oli-
gonucleotide AR177 (Zintevir, T30177), showed that it in-
hibited HIV-1 replication by interefering both with cell fu-
sion events and integration [226]. AR177 inhibited integra-
tion at nanomolar concentrations by interefering with IN-
viral DNA binding [191]. Oligonucleotides composed of 
two, three or four G-quartets of different lengths were de-
signed to better understand the binding interaction with IN. 
Inhibition was observed with all oligonucleotides suggesting 
that the interaction with IN occurs between the GTGT loop 

domain of the G-quartet [133]. Despite the potent activity 
observed against IN, no significant mutations were observed 
within the IN-coding region but rather in the envelope gly-
coprotein gp120 region pointing to the primary target of G-
quartets as the viral entry rather than integration [38, 85]. 
This finding did not affect the therapeutic potential of 
AR177, which is the first oligonucleotide to enter human 
clinical trials [298]. Oligonucleotides containing 6-
oxocytidine were found to inhibit IN in vitro by interefering 
with IN-DNA binding at submicromolar concentrations [16]. 
Inhibition was dependent on sequence and required the pres-
ence of the 6-oxocytidine base [17]. 

Peptides and Antibodies 

 The first peptide inhibitor of IN was identified in 1995 
after screening a synthetic peptide combinatorial library. The 
peptide contained six aminoacids with the sequence 
HCKFWW and inhibited both 3’-processing and strand 
transfer at micromolar concentrations [175]. More recently 
peptide inhibitors were designed to interact with the dimeri-
zation interface of HIV-1 IN. The CCD of IN forms dimers 
through the interaction of helices 1, 3, 5, 6 and 3. Two 
synthetic peptides were thus produced to contain the amino 
acid sequence of the 1 helix, INH1, and the amino acid se-
quence of the 5 helix, INH5. INH5 was a better inhibitor 
than INH1, in strand transfer assays however, both peptides 
inhibited the formation of functional IN oligomers. Mecha-
nistic studies indicated that INH5 selectively interacts with 
the 1 helix of IN [188]. Furthermore, in a separate experi-
ment interfacial peptides 1, 5 and 6 inhibited IN at mi-
cromolar concentrations possibly by blocking the ability of 
IN to dimerize [317]. Another peptide, K159, was produced 
based on the 4 helix of IN with the aim of interacting with 
the counterpart 4 helix of IN. K159 inhibited IN with a rela-
tively low potency and its activity was proposed to be a re-
sult of a peptide-protein coiled-coil structure formation 
[272]. A monospecific antibody against K159 inhibited the 
catalytic activity of IN at nanomolar concentrations and de-
creased DNA binding [187]. I33, a 33-mer peptide was iden-
tified from a two-hybrid system that used HIV-1 IN as the 
bait and a yeast genomic library as the peptide source. Fur-
ther analysis led to a shorter peptide, EBR28 that was shown 
to interact with the CCD of IN interfering with DNA binding 
[64]. Naturally occurring peptides have been shown to in-
hibit IN catalytic activity at micromolar concentrations. Ex-
amples include the complestatins [264] and integramides 
[265]. Both these compounds preferentially inhibit 3’-
processing over strand transfer however, are cytotoxic in 
antiviral assays [58]. A recent study reported the anti-IN 
activity of indolicidin, a natural peptide, and new indolicidin 
analogues [149]. MAP30 and GAP31 plant proteins isolated 
from the medicinal plants Momordica charantia and Gelo-
nium multiflorum also displayed anti-IN activity [160], 

 A library of monoclonal antibodies was screened against 
HIV-1 IN and several antibodies that bind to the NTD 
mAb17, the CCD mAb4, and the CTD mAb33 inhibited IN 
activity in vitro. The epitope of mAb17 was mapped to de-
terminants of the helix-turn-helix motif of the NTD domain 
of IN that is stabilized upon coordination with Zn2+. Inhibi-
tion occurs by destabilization of the N-terminal helix upon  
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Table 1. Structures of HIV-1 IN Inhibitors 
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The general structural motif of the DKA inhibitors is depicted in red. The presented inhibitors were chosen based on their activity against integration and include selected analogues 
of the DKAs such as 5CITEP, L-870, 810, S-1360 and GS-9137 [303], V-165 from the class of pyrano-dipyrimidines [231] and FZ41 from the class of styrylquinolines [197]. 
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antibody binding [308]. The antibody mAb33 and its epitope 
Fab33 inhibit 3’-processing at micromolar concentrations by 
interfering with CTD IN-DNA binding [309]. The areas 
bound by antibodies could constitute an alternative area for 
the design of small molecule IN inhibitors. 

Sulfated Compounds 

 Diaryl sulfones have been shown to inhibit the HIV rep-
lication cycle and were thus investigated as potential IN in-
hibitors in 1997 [5, 214]. Their study however, did not lead 
to any promising IN inhibitors due to either cellular toxicity 
or lack of antiviral activity [198]. Suramin, a polyanionic 
sulfonate, the 2-mercaptobenzenesulfonamides and some 
thiazolothiazepines are active against IN at micromolar con-
centrations and exhibit antiviral activity [31, 182, 213, 217, 
230]. Mercaptosalicylhydrazides were designed to bind the 
cysteine residues and the metal ion within the CCD of IN. 
Their design was based on the parent compound salicylhy-
drazide that exhibited anti IN activity at micromolar concen-
trations [215]. Salicylhydrazide is potent only in the pres-
ence of Mn2+ while the mercaptosalicylhydrazides are active 
in the presence of both Mn2+ and Mg2+. Based on experi-
ments with mutant C65S IN and molecular modeling studies, 
it was proposed that mercaptosalicylhydrazides form a ter-
nary complex with Mg2+ and a disulfide bond with C65. 
Contrary to salicylhydrazides they exhibit antiviral activity 
and are 300 times less toxic [219]. 

Hydroxylated Aromatics 

 Hydroxylated aromatics represent one of the first classes 
of HIV-1 IN inhibitors. This class of inhibitors includes 
compounds from either natural or synthetic origin with mul-
tiple aromatic rings. In most cases the presence of at least 
one catechol moiety is a prerequisite for inhibitory activity. 
The mode of action of hydroxylated aromatic compounds is 
believed to arise from the ability of the catechol moiety to 
chelate the divalent cation in the active site of IN [218]. 
However, the ability of the catechol containing compounds 
to undergo in situ oxidation to active quinone species has 
imparted considerable toxicity thus, diminishing their devel-
opment as anti-HIV agents [274]. 

 CAPE, a natural product produced by bees, was one of 
the first inhibitors reported of HIV-1 IN. It weakly inhibited 
all three reactions catalyzed by IN, but displayed selectivity 
towards the strand transfer step [94, 95]. Thalassiolins A-C, 
isolated from the Caribbean sea grass Thalassia testudinum, 
present a novel series of flavones that contain a sulfate-
substituted -D-glucose at the 7-position. The sulfate group 
imparts increased potency against IN and thalassiolin A, the 
most potent analogue of the family, exhibits IC50 values of 
0.4 μM for the strand transfer reaction [254]. Biscatechols 
and arylamides have been synthesized and tested for either 
IN inhibitory activity or to identify active catechol isosteres 
that lack cytotoxicity [70, 155, 203, 316]. Hypericin shows 
inhibitory activity in cell culture and against purified IN and 
PICs but it has not been proved that integration is the major 
target in vivo [91]. 

 Dicaffeoylquinic acids, first identified as IN inhibitors in 
1996, were isolated from medicinal plants of the Bolivian 
Kallawaya culture [195, 251, 252]. A synthetic analogue of 

dicaffeoylquinic acids, L-chicoric acid, exhibited the highest 
potency with IC50 values of 1.1 and 0.8 μM for 3’-processing 
and strand transfer, respectively. SAR studies that followed 
identified both enantiomers of chicoric acid as equal inhibi-
tors. Furthermore, inhibition was maintained in the presence 
of either the catechol moiety or the central carboxylic acid 
group. When catechol is masked as an acetate, at least one 
carboxylic acid group is required for activity [146, 167]. 
Further studies led to derivatives with comparable and in 
some cases higher activity than L-chicoric acid [126]. Initial 
in vitro studies indicated that L-chicoric acid interacts with 
residues near the catalytic site of IN [147] however, similar 
activity was not observed with PIC-based assays [91, 114]. It 
was later revealed that L-chicoric acid interferes with the 
gp120-CD4 interaction during viral enrty [235]. A time-of-
addition experiment showed inhibition of viral replication by 
chicoric acid at an early stage, about 1 h after infection. Fur-
thermore, isolated HIV-1 strains restistant to chicoric acid 
exhibited signifant mutations in the region of the envelope 
glycoprotein gp120 and none in the IN gene. Recombination 
of the gp120 gene of the resistant strain led to the same resis-
tance profile as the isolated strain. 

 A variety of other natural products reported to possess 
anti-IN activity include, curcumin the yellow substance in 
turmeric [190], certain lignal derivatives [72], the dimeric 
alkyl compounds integracins [266], the tetracyclic aromatic 
compounds integrastatins [268] and the more complex hexa-
cyclic compounds integramycins [267]. These products in-
hibit the catalytic activities of IN at micromolar concentra-
tions. Lithospermic acids are additional examples of hy-
droxylated aromatics, isolated from herbal plants. They ex-
hibit activity against HIV-1 IN in vitro by inhbiting both 3’-
processing and strand transfer with IC50 values of 0.5-0.8 and 
0.4-0.5 μM, respectively and prevent viral replication in 
vivo. Furthermore, they do not affect viral entry or inhibit RT 
[1]. More recently four novel naphtha- -pyrones isolated 
from Fusarium fungal extracts have shown inhibition of both 
the recombinant IN 3’-processing and strand transfer reac-
tion, at the micromolar range [269]. 

 In an attempt to overcome the toxicity issue hydroxylated 
aromatic compounds that lack the catechol functionality 
were developed. NCS 158393, a 4-hydroxycoumarin deriva-
tive is an example of an inhibitor that does not contain the 
catechol moiety and exhibits antiviral antiprotease and anti-
integrase activity [194]. Efforts in simplifiying the structure 
of this inhibitor led to the identification of a minimal active 
pharmacophore that consists of a coumarin dimer [315]. 
Styrylquinoline derivatives have been synthesized to chelate 
the divalent metal in the CCD of IN. They are active against 
IN even in the absence of a catechol moiety. The most potent 
analogues inhibit IN at submicromolar concentrations and 
viral replication in CEM cells at nontoxic concentrations 
[197]. SAR studies of styrylquinolines identified regions in 
the phenyl ring that are required for activity. Based on these 
studies the proposed binding mode of styrylquinoline deriva-
tives includes coordination to the divalent cation within the 
CCD of IN [322]. Styryquinolines selectivily inhibit the 3’-
processing step by preventing IN-DNA recognition [68]. 
Several experiments indicated that styryquinolines may have 
an additional inhibitory effect occurring at an even earlier 
stage, during nuclear import of the PIC [206]. One resistant 
mutation that has been identified in the IN site of interaction 
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with LEDGF/p75 suggests that styrylquinolines prevent PIC 
import by interfering with the interaction between IN and the 
particular host factor. Further IN coding region mutations 
collected in the presence of styrylquinolines confirm that IN 
is a target of this class of inhibitors acting at steps prior to 
integration. The activity of styrylquinolines is not diminished 
by HIV mutant strains that confer resistance to DKAs sug-
gesting a different binding site for the two classes of inhibi-
tors. Thus, styrylquinolines could constitute an alternative 
type of IN inhibitors [13]. 

Diketoacids and Analogues 

 DKAs are the first family of validated IN inhibitors and 
were independently discovered by Shionogi & Co. Ltd and 
the Merck Research Laboratory. Shionogi simultaneously 
reported the first crystal structure of 5CITEP within the core 
of HIV-1 IN with Merck publishing a series of DKA deriva-
tives. The general structure of the DKAs depicted in Table 1 
presents a diketo moiety connected to an acidic group (R1) 
and an aromatic group (R2). The Shionogi compound 
5CITEP bears a tetrazole as R1 and the Merck derivatives a 
carboxylic acid group. The Merck derivatives were identified 
by screening a library of more than 250000 compounds with 
an assay of preassembled recombinant IN on immobilized 
oligonucleotides. The most potent compounds L-731,988 
and L-708,906 inhibited strand transfer in recombinant IN at 
50 nM and cell based assays at low micromolar concentra-
tions. Inhibitory activity was also observed with PIC based 
assays [117]. Further optimization by Merck led to the dis-
covery of heterocyclic analogues of DKAs where the 1,3-
diketo moiety had been replaced by the more metabolicaly 
stable 8-hydroxy-1,6-naphthyridine ketones. Evidence for 
the in vivo efficacy of DKAs were presented by Hazuda et 
al. by demonstrating antiviral activity of L-870,812 in rhesus 
macaques infected with SHIV [119]. Compound L-870,810 
reached phase I clinical trials but was later withdrawn due to 
toxicity in animals. L-900,612 (MK-05180), a sister deriva-
tive of L-870,810 developed by Merck, has advanced 
through clinical trials to enter phase III clinical studies. It 
inhibits strand transfer at nanomolar concentrations and acts 
synergistically with other antiretroviral drugs [51, 158]. The 
Shionogi derivative S-1360 is a structural analogue of 
5CITEP where the tetrazole has been replaced by a triazole 
moiety. S-1360 inhibits IN at nanomolar concentrations and 
viral replication at micromolar concentrations. It is the first 
inhibitor to enter clinical trials but has been replaced by 
Shionogi-GlaxoSmithKline with the follow-up compound 
GSK-810871 after reviewing the data of the phase I/II stud-
ies [158, 303]. The novel IN inhibitor GS-9137 discovered 
by Japan Tobacco Inc. and licensed to Gilead Sciences bears 
a quinolone core structure instead of the diketo moiety and 
inhibits strand transfer and viral replication at nanomolar 
concentrations. GS-9137 is currently under clinical phase II 
studies. It exhibits synergistic effects when administered 
with RT inhibitors and additive effects with PR inhibitors 
[256]. 

 DKAs are referred to as strand transfer inhibitors because 
they selectively inhibit the strand transfer step and require 
assembly of the full-length IN onto target DNA [83, 117]. 
DKAs can also inhibit the 3’-processing step at 30-70 fold 
higher concentrations. The validation of IN as the molecular 

target of DKAs was primarily based on the accumulation of 
resistant viruses that were collected in the presence of the 
inhibitors. Mutations within the IN coding region were iden-
tified and then introduced into recombinant viruses. The 
same resistance profile was observed for the recombinant 
viruses as for the isolated resistant strains. Furthermore HIV-
1 infected cells treated with DKAs showed an accumulation 
of LTR viral circles [117]. In a time-of-addition experiment 
the addition of a DKA could be postponed for 7 hours, a step 
that coincides with HIV integration [236]. 

 SAR studies have identified important features for activ-
ity [229, 297]. It is generally accepted that the diketo acid 
moiety acts by forming metal chelation complexes with the 
divalent cation at the CCD of IN. While this feature is im-
portant for activity, the aromatic part directs the strand trans-
fer selectivity [183]. Substitution studies on the aromatic part 
revealed that it can accommodate a variety of substituents 
such as azido [277, 313] and photoactivable cross-coupling 
groups [314] at the optimal meta position. The diketo acid 
moiety was replaced by bioisosteres that mimic the ketone, 
the enolizable ketone and the carboxyl oxygen while adopt-
ing at the same time a coplanar conformation. Such features 
are the 8-hydroxy-1,6-naphthyridines and the 8-hydroxy-1,6-
naphthyridine-7-carboxamides that mask the enolizable ke-
tone within the naphthyridine ring system and use one of the 
nitrogen atoms as isosteres of the carboxylic acid [321]. The 
isolated carboxylic acid was replaced by acidic bioisosteres 
such as a tetrazole and triazole and by basic bioisosteres such 
as a pyridine ring and the enolizable ketone by a phenolic 
hydroxyl group [58, 302]. Isosteres of the diketo acid moiety 
exhibit different preferences for metal affinity. Carboxylates 
show similar affinity for both Mg2+ and Mn2+ whereas nitro-
gen-containing heterocycles show preference for Mn2+ [112, 
184]. This observation can explain the lack of antiviral activ-
ity in cellular systems for the tetrazole containing DKAs 
since Mg2+ is the preferred metal ion in vivo [229]. In an 
attempt to find molecules that can accommodate two metal 
ions within the same active site or within two adjacent active 
sites, a series of dimeric DKA-containing inhibitors were 
prepared. All the compounds were highly potent against all 
IN activities but strand transfer selectivity varied from 1 to 
29-fold. It was proposed that the bifunctional DKAs bind 
competitively with both the target and donor DNA in con-
trast to the monofunctional DKAs that bind competitively to 
target DNA. Therefore, bifunctional DKAs could broaden 
the inhibition area of DKAs to include both 3’-processing 
and strand transfer [183]. Docking experiments showed one 
diketo moiety to interact with a Mg2+ ion and the other 
diketo moiety to occupy an area near the catalytic residue 
E152 [172]. DKAs are currently the only inhibitors for 
which structural information exist within the IN context, 
through the co-crystallization of 5CITEP with the CCD do-
main of IN. Nevertheless, this crystal structure has been met 
with skepticism due to the absence of target DNA from the 
crystal structure. Furthermore, a direct contact between the 
inhibitor and the catalytic residues D64 and D116, or the 
magnesium ion was not observed [109]. Molecular dynamics 
simulations indicated that the position of 5CITEP is a result 
of crystal packing effects and can adopt a different confor-
mation within the binding site [220, 270, 271]. Further simu-
lations with other DKAs revealed a different mode of inter-
action than 5CITEP [144, 184]. 
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 In order to account for the strand transfer selectivity, a 
model for the mechanism of action of DKAs was proposed. 
Following 3’-processing IN undergoes a structural change 
leading to a distinct binding site for the target DNA. DKAs 
bind within that unique site near the nucleophilic end of the 
viral DNA and to an acceptor site at the target DNA [83]. 
Inhibition of strand transfer occurs due to prevention of the 
nucleophilic attack of the viral DNA to the acceptor site of 
the target DNA [183]. Coordination of the divalent cation at 
the active site of IN with DKAs is necessary to support the 
mechanism of action of these inhibitors [112]. It has been 
proposed that DKAs act as interfacial inhibitors by binding 
at the interface of the viral DNA-IN and metal complex right 
after the 3’-processing step, thus stabilizing the transition 
state and preventing strand transfer. This hypothesis was 
based on the study of the resistant mutants that occurred with 
residues important for DNA binding and around the DDE 
catalytic site [97]. As with RT and PR inhibitors drug resis-
tance can develop for the DKA IN inhibitors. However, the 
DKA IN resistant profile depends on the substituents of the 
inhibitor. This indicates that the resistance problem could be 
overcome by changing substituents on a fixed pharma-
cophore [118]. In a study carried out by Reinke et al. a DKA 
derivative inhibited the replication of 12 types of HIV-1 iso-
lates, proving that the naturally occurring variation within 
the IN gene will not be a major obstacle in the development 
of these drugs [246]. 

Pyrano-Dipyrimidines 

 An alternative class of IN inhibitors include the pyrano-
dipyrimidines and the most potent analogue V-165, inhibits 
viral replication in infected cells at micromolar concentra-
tions, 14 times below its cytotoxicity concentration. SAR 
studies pointed to the free sulfhydryl functionality and the 
para-nitro substituents as important moieties for the activity 
of V-165. According to enzymatic assays, V-165 inhibits 
both reverse transcription and integration. Time-of-addition 
experiments indicated that V-165 interfered with viral repli-
cation at a step following reverse transcription. In order to 
determine the major antiviral target of V-165 quantitative 
Alu-PCR was carried out confirming that V-165 interferes 
with proviral DNA integration. V-165 possibly inhibits the 
first step of integration, the complex formation between 
DNA-IN in the cytoplasm and thereby inhibits the subse-
quent 3’-processing step [231]. 

CLINICAL APPLICATIONS - FUTURE DIRECTIONS 

 Despite the availability of RT and PR inhibitors in the 
treatment of HIV, the development of inhibitors that target 
the third enzyme IN is essential for the successful treatment 
of HIV-infected patients. Considerable progress towards 
designing IN inhibitors has been made over the last years 
and several lead compounds have been identified. To date 
the most promising inhibitors are the DKAs and their deriva-
tives. Two compounds are currently in clinical trials MK-
0518 and GS-9137. MK-0518 has in vitro inhibitory activity 
IC50 33 nM, is active against resistant strains and shows syn-
ergistic effects with the currently approved antiretroviral 
drugs. In a phase II study involving HIV-infected patients 
receiving HAART, MK-0518 was well-tolerated and the 
side-effects reported were similar to the placebo group. In a 

recent phase III study in patients that did not respond to 
antiretroviral treatment, MK-0518 in combination with op-
timized background therapy demonstrated superior antiretro-
viral effects compared to the placebo group and was well-
tolerated (www.retroconference.org/2007). GS-9137 has in 
vitro inhibitory activity IC50 0.2 nM and is active against 
resistant strains. In a phase I monotherapy study, GS-9137 
was well-tolerated by HIV infected patients and the reported 
side-effects were similar to those of the placebo group. In a 
phase II study GS-9137 in combination with nucleoside re-
verse transcriptase inhibitors demonstrated superior efficacy 
to boosted protease inhibitors. The resistance profile of GS-
9137 showed a number of IN mutations that exhibited re-
duced susceptibility to the drug but retained resistance with 
other IN inhibitors and antiretroviral drugs from other 
classes (www.retroconference.org/2007). The other promis-
ing compounds in preclinical trials belong to the classes of 
pyrano-dipyrimidines and styrylquinolines [158]. 

 The IN inhibitors described so far span a broad section of 
the integration process. DKAs and certain hydroxylated 
aromatics inhibit the catalytic activities of IN, strand transfer 
and in some cases 3’-processing, by forming complexes with 
the divalent cation within the CCD of IN. Styrylquinoline 
derivatives interefere with IN-DNA complex formation and 
prevent the nuclear translocation of the PIC possibly by pre-
venting the interaction between IN and the host factor 
LEDGF/p75. In the same manner other factors that are part 
of the PIC, such as INI1 and RT for which an interaction 
with IN has been established, can serve as potential targets 
for inhibition. Peptide inhibitors target the dimerization in-
terfaces of IN and monoclonal antibodies have been de-
signed to target the isolated CTD and NTD domains. In a 
similar manner monoclonal antibodies can be designed to 
target other important regions of IN. The HHCC motif of the 
NTD domain of IN is another possible site for inhibition 
since it promotes multimerization and enhances catalytic 
activity. An indirect way to prevent integration is by target-
ing the host cell DNA repair enzymes. Unlike the above 
mentioned inhibitors, inhibitors of this class may not develop 
drug resistance due to the low mutational rate of the host cell 
enzymes [223]. Although the exact mechanism of integration 
is not yet fully understood, the IN-field is advancing rapidly 
making the development of clinically viable IN inhibitors, 
tangible. 
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ABBREVIATIONS 

5CITEP = 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H- 
   tetrazol-5-yl)-propenone 

AIDS = Acquired immune deficiency syndrome 

ASV = Avian sarcoma virus 

BAF = Barrier to autointegration factor 

CAPE = Caffeic acid phenyl ester 

CCD = Catalytic core domain 

CoMFA = Comparative molecular field analysis 
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CoMSIA = Comparative molecular similarity analysis 

DCs = Dendritic cells 

DFT = Density functional theory 

CTD = C-terminal domain 

EVA = Eigen value analysis 

FCS = Fluorescence correlation spectroscopy 

HAART = Highly active antiretroviral treatment 

HIV-1 = Human immunodeficiency virus type 1 

HIV-2 = Human immunodeficiency virus type 2 

HMG-I(Y) or = High mobility group chromosomal protein  
HMGA1  A1 

IBD = Integrase binding domain 

IN = Integrase 

INI1 = Integrase interactor 1 

LEDGF/p75 = Lens epithelium derived growth-factor 

LTR = Long terminal repeat 

MA = Matrix 

MoMLV = Moloney murine leukemia 

NLS = Nuclear localization signal 

NMR = Nuclear magnetic resonance 

NTD = N-terminal domain 

PASS = Putative actives sites with spheres 

PCR = Polymerase chain reaction 

PIC = Preintegration complex 

PR = Protease 

QSAR = Quantitative structure activity relationships 

RT = Reverse transcriptase 

SAR = Structure activity relationship 

SHIV = Simian-human immunodeficicency virus 
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